Принципиально новые возможности экспериментального изучения источников наиболее энергичной части спектра К. л. (вплоть до энергий 1020 —1021 эв ) открылись после обнаружения уникальных астрофизических объектов — пульсаров. По современным представлениям, пульсары — это небольшие (~ 10 км в диаметре) нейтронные звёзды, возникшие в результате быстрого гравитационного сжатия (коллапса гравитационного ) неустойчивых звёзд типа сверхновых. Гравитационный коллапс приводит к колоссальному увеличению плотности вещества звезды (до ядерной плотности и выше), магнитного поля (до 1013 гс ) и скорости вращения (до 103 оборотов в сек ). Всё это создаёт благоприятные условия для ускорения тяжёлых заряженных частиц до исключительно высоких энергий ~ 1021 эв и электронов до энергий ~ 1012 эв. И действительно, наблюдения показали, что наряду с радиоизлучением пульсары испускают (с тем же периодом) световое, рентгеновское, а иногда и g- излучение, которые можно объяснить только процессом магнитотормозного излучения очень быстрых электронов. Т. о., синхротронное излучение электронов К. л., обусловленное сильными магнитными полями, локализованными вблизи неустойчивых «горячих» объектов — источников К. л., позволяет решать проблему происхождения К. л. методами наблюдательной астрономии (радиоастрономии, рентгеновской астрономии , гамма-астрономии ).
Важную дополнительную информацию об источниках и возрасте К. л. дают исследования ядерного состава К. л. Из небольшого относительного содержания в К. л. ядер Be следует, что радиоактивный изотоп 10 Ве (среднее время жизни которого около 2 млн. лет) успевает практически полностью распасться, откуда получается оценка верхнего предела возраста К. л. 20—50 млн. лет. Примерно того же порядка (10—30 млн. лет) оценки получаются из относительного содержания группы лёгких ядер (Li, Be, В) в целом, а также по среднему времени, которое требуется электронам К. л. для диффузного распространения от внутригалактических источников до границ Галактики. Анализ состава сверхтяжёлой ядерной компоненты (Z > 70) даёт средний возраст К. л. не более 10 млн. лет.
Ещё один способ проверки различных гипотез происхождения К. л. — измерение интенсивности К. л. в далёком прошлом, в частности в периоды известных вспышек ближайших сверхновых (например, вспышки в 1054). Существуют два метода, с помощью которых можно было бы обнаружить эффекты возрастания интенсивности К. л. в прошлом не только в результате взрыва сравнительно недалёких от Солнечной системы сверхновых звёзд, но и в результате возможных гораздо более мощных взрывных процессов в ядре Галактики. Это радиоуглеродный метод, в котором по концентрации изотопа 14 С в различных годичных кольцах очень старых деревьев определяют темп накопления в атмосфере 14 C, образующегося в результате ядерных реакций под действием К. л., и метеоритный метод, основанный на изучении состава стабильных и радиоактивных изотопов метеоритного вещества, подвергавшегося длительному воздействию К. л Эти методы свидетельствуют о том, что средняя интенсивность К. л. сравнительно мало отличалась от современной в течение десятков тысяч и миллиарда лет соответственно. Постоянство интенсивности К. л. в течение миллиарда лет делает маловероятной гипотезу о происхождении всех К. л. в процессе взрыва ядра нашей Галактики, который считается ответственным за образование галактического гало (пока не доказанного прямыми наблюдениями).
Взаимодействие К. л. с веществом.
1. Ядерно-активная компонента К- л. и множественная генерация частиц . При взаимодействии протонов и др. ядер первичных К. л. высокой энергии (~ несколько Гэв и выше) с ядрами атомов земной атмосферы (главным образом азота и кислорода) происходит расщепление ядер и рождение нескольких нестабильных элементарных частиц (т. н. множественные процессы ), в основном p-мезонов (пионов) — заряженных (p+ , p- ) и нейтральных (p ) с временами жизни 2,5?10-8 сек и 0,8?10-16 сек соответственно. Со значительно меньшей вероятностью (в 5—10 раз) рождаются К-мезоны и с ещё меньшей — гипероны и практически мгновенно распадающиеся резонансы . На рис. 6 приведена фотография множественного рождения частиц, зарегистрированного в ядерной фотоэмульсии; частицы вылетают из одной точки в виде узкого пучка. Среднее число вторичных частиц, образующихся в одном акте взаимодействия протона (или p-мезона) с лёгким ядром пли одним нуклоном такого ядра, возрастает с ростом энергии E сначала по степенному закону, близкому к E1/3 (вплоть до E » 20 Гэв ), а затем (в области энергий 2?1010 —1013 эв ) этот рост замедляется и лучше описывается логарифмической зависимостью. В то же время косвенные данные по широким атмосферным ливням указывают на процессы значительно более высокой множественности при энергиях ³ 1014 эв.
Угловая направленность потока рожденных частиц в широком интервале энергии первичных и рожденных частиц такова, что составляющая импульса, перпендикулярная направлению первичной частицы (т. н. поперечный импульс), составляет в среднем 300—400 Мэв/с, где с — скорость света в вакууме (при очень высоких энергиях E частицы, когда энергией покоя частицы mc2 можно пренебречь по сравнению с её кинетической энергией, импульс частицы р = E/c ; поэтому в физике высоких энергий импульс обычно измеряют в единицах Мэв/с ).
Первичные протоны при столкновении теряют в среднем около 50% начальной энергии (при этом они могут испытывать перезарядку, превращаясь в нейтроны).
Образующиеся при расщеплении ядер вторичные нуклоны (протоны и нейтроны) и рожденные в столкновениях заряженные пионы высокой энергии будут также (вместе с потерявшими часть энергии первичными протонами) участвовать в ядерных взаимодействиях и вызывать расщепление ядер атомов воздуха и множественное образование пионов. Средний пробег, на котором осуществляется одно ядерное взаимодействие, принято измерять удельной массой пройденного вещества он составляет для первичных протонов ~ 90 г/см2 воздуха, т. е. ~9% всей толщи атмосферы. С ростом атомного веса вещества А средний пробег постепенно возрастает (примерно как А1/3 ), достигая ~ 160 г/см2 для свинца. Рождение пионов происходит в основном на больших высотах (20—30 км ), но продолжается в меньшей степени по всей толще атмосферы и даже на глубине нескольких м грунта.
Вылетающие при ядерных столкновениях нуклоны ядер и не успевшие распасться заряженные пионы высокой энергии образуют ядерно-активную компоненту вторичных К. л. Многократное повторение последовательных, каскадных взаимодействий нуклонов и заряженных пионов с ядрами атомов воздуха, сопровождающихся множественной генерацией новых частиц (пионов) в каждом акте взаимодействия, приводит к лавинообразному возрастанию числа вторичных ядерно-активных частиц и к быстрому уменьшению их средней энергии. Когда энергия отдельной частицы становится меньше 1 Гэв, рождение новых частиц практически прекращается и остаются (как правило) только процессы частичного (а иногда полного) расщепления атомного ядра с вылетом нуклонов сравнительно небольших энергий. Общий поток частиц ядерно-активной компоненты по мере дальнейшего проникновения в глубь атмосферы уменьшается (рис. 7 , кривая 1), и на уровне моря (~1000 г/см2 ) остаётся менее 1% ядерно-активных частиц.