2. Электронно-фотонные ливни и мягкая компонента вторичных К. л. Образующиеся при взаимодействиях частиц ядерно-активной компоненты с атомными ядрами нейтральные пионы практически мгновенно распадаются (вследствие их очень малого времени жизни) на два фотона (g ) каждый: p°®2g . Этот процесс даёт начало электронно-фотонной компоненте К. л. (она называется также мягкой, т. е. легко поглощаемой, компонентой).
В сильных электрических полях атомных ядер эти фотоны рождают электронно-позитронные пары e- e+ (g ®e- +e+ ), а электроны и позитроны, в свою очередь, путём тормозного излучения испускают новые фотоны (е± ®е± + g ) и т. д. Такие процессы, носящие каскадный характер, приводят к лавинообразному нарастанию общего числа частиц — к образованию электронно-фотонного ливня. Развитие электронно-фотонного ливня приводит к быстрому дроблению энергии p на всё большее число частиц, т. е. к быстрому уменьшению средней энергии каждой частицы ливня. После максимального развития мягкой компоненты, достигаемого на высоте около 15 км (~ 120 г/см2 ), происходит её постепенное затухания (рис. 7 , кривая 2). Когда энергия каждой частицы становится меньше некоторого критического значения (для воздуха критическая энергия составляет около 100 Мэв ), преобладающую роль начинают играть потери энергии на ионизацию атомов воздуха и комптоновское рассеяние (см. Комптона эффект ); увеличение числа частиц в ливне прекращается, и его отдельные частицы быстро поглощаются. Практически полное поглощение электронно-фотонной компоненты происходит на сравнительно небольших толщах вещества (особенно большой плотности); в лабораторных условиях для этого достаточно иметь свинцовый экран толщиной 10—20 см (в зависимости от энергии частиц). Электронно-фотонный ливень, зарегистрированный в камере Вильсона, приведён на рис. 8.
Основной характеристикой электронно-фотонного ливня является изменение числа частиц с увеличением толщины пройденного вещества — т. н. каскадная кривая (рис. 9 ). В соответствии с теорией этого процесса число частиц в максимуме каскадной кривой примерно пропорционально энергии первоначальной частицы. Углы отклонения частиц от оси ливня определяются рассеянием электронов и позитронов, а средний поперечный импульс составляет около 20 Мэв/с.
Наряду с p°-мезонами в К. л. существуют и др. источники образования электронно-фотонных ливней. Это электроны и g -кванты высокой энергии (> 100 Мэв ) первичных К. л., а также d -электроны, т. е. атомарные электроны, выбиваемые за счёт прямого электрического взаимодействия проходящих сквозь вещество быстрых заряженных частиц К. л.
При очень высоких энергиях (³ 1014 эв ) электронно-фотонные ливни в земной атмосфере приобретают специфические черты широких атмосферных ливней. В таких ливнях очень большое число последовательных каскадов размножения приводит к сильному росту общего потока частиц (исчисляемого в зависимости от энергии многими миллионами и даже миллиардами) и к их широкому пространственному расхождению — на десятки и сотни м от оси ливня. В широких атмосферных ливнях у поверхности Земли одна частица ливня приходится примерно на несколько (2—3 ) Гэв энергии первичной частицы, вызвавшей ливень. Это даёт возможность оценивать по полному потоку частиц в ливне энергию приходящих на границу земной атмосферы «предков» этих ливней, что невозможно сделать непосредственно из-за крайне малой вероятности их прямого попадания в точку наблюдения.
Вследствие большой плотности потока частиц в широком атмосферном ливне испускается сравнительно интенсивное направленное электромагнитное излучение как в оптической области спектра, так и в радиодиапазоне. Оптическая часть свечения определяется процессом Черенкова — Вавилова излучения , поскольку скорости большинства частиц превышают фазовую скорость распространения света в воздухе. Механизм радиоизлучения более сложен; он связан, в частности, с тем, что магнитное поле Земли вызывает пространственное разделение потоков отрицательно и положительно заряженных частиц, что эквивалентно возникновению переменного во времени электрич. диполя .
3. Космические мюоны и нейтрино. Проникающая компонента вторичного излучения. Возникающие в атмосфере под действием К. л. заряженные пионы участвуют в развитии ядерного каскада лишь при достаточно больших энергиях — до тех пор, пока не начинает сказываться их распад на лету. В верхних слоях атмосферы процессы распада становятся существенными уже при энергиях ? 1012 эв.
Заряженный пион (с энергией ? 1011 эв ) распадается на мюон m ± (заряженную нестабильную частицу с массой покоя mm »207 me, где me — масса электрона, и средним временем жизни t » 2?10-6 сек ) и нейтрино n (нейтральную частицу с нулевой массой покоя). В свою очередь, мюон распадается на позитрон (или электрон), нейтрино и антинейтрино . Т. к. скорости мюонов (как и всех остальных частиц К. л.) очень близки к скорости света с, то, в соответствии с теорией относительности, среднее время до их распада t достаточно велико — пропорционально полной энергии E, t =
. Кроме того, мюоны, не являясь ядерно-активными частицами, слабо взаимодействуют с веществом (посредством электромагнитного взаимодействия ) и теряют свою энергию в основном на ионизацию атомов (~ 2 Мэв на толщине 1 г/см2 ). Поэтому поток мюонов представляет собой проникающую компоненту К. л. Даже при сравнительно умеренной энергии ~ 10 Гэв мюон может не только пройти сквозь всю земную атмосферу (см. рис. 7 , кривая 3), но и проникнуть далеко в глубь Земли на расстояния порядка 20 м грунта (рис. 10 ). Максимальная глубина, на которой регистрировались мюоны наиболее высокой энергии, составляет около 8600 м в переводе на водный эквивалент. Благодаря своей большой проникающей способности именно мюоны образуют «скелет» широких атмосферных ливней на больших (сотни м ) расстояниях от их оси.Т. о., одновременно с развитием описанного выше ядерного каскада происходит (за счёт распада p ) его «обрастание» электронно-фотонной компонентой, а также (за счёт распадов p+ и p- ) — проникающей мюонной компонентой (рис. 11 ).
Высокая проникающая способность в сочетании с прямо пропорциональным плотности вещества коэффициент поглощения при умеренных энергиях (десятки и сотни Гэв ) делает проникающую компоненту К. л. очень удобным средством для подземной геофизической и инженерной разведки (рис. 12 ). Измеряя интенсивность К. л. телескопом счётчиков в штольнях и сравнивая полученные данные с известными кривыми поглощения К. л. в воде или грунте, можно обнаруживать или уточнять положения рудных пластов и пустот, а также измерять весовую нагрузку на грунт от стоящих на нём сооружений.
При энергиях порядка 1012 эв и выше наряду с ионизационными потерями энергии мюонов становятся всё более существенными потери энергии на образование электронно-позитронных пар и тормозное излучение, а также на прямые взаимодействия с атомными ядрами вещества. Вследствие этого на глубинах ³ 8 км водного эквивалента под углами ³ 50° к вертикали поток космических мюонов оказывается ничтожно малым. Эксперименты, проводившиеся с 1964 в шахтах Индии и Южной Африки с установками огромной площади, позволили обнаружить на этих глубинах под углами > 50° дополнительный поток мюонов, единственным источником которых могли быть только взаимодействия нейтрино с атомными ядрами вещества. Эти опыты представили собой уникальную возможность изучения свойств самой проникающей — нейтринной — компоненты К. л. Наиболее важной проблемой при этом является изучение взаимодействия нейтрино сверхвысоких энергий с веществом; в частности, для выяснения структуры элементарных частиц особый интерес представляет исследование увеличения поперечного сечения взаимодействия (уменьшения «прозрачности» вещества) с ростом энергии нейтрино. Такое возрастание сечения взаимодействия нейтрино установлено на ускорителях до энергий 1010 эв. Очень важно исследовать, будет ли продолжаться этот рост сечения вплоть до энергий 1015 эв (соответствующих характерному расстоянию слабых взаимодействий 6?10-17 см ).