Наряду с активностью и избирательностью другой эксплуатационной характеристикой К. является стабильность, которая часто определяет целесообразность промышленного использования К. в том или ином процессе. Промышленные К. с течением времени изменяются, снижаются их активность и избирательность в результате различных побочных процессов, например вследствие взаимодействия с примесями, поступающими с сырьём (так называемое отравление, см. Каталитические яды ), спекания и перекристаллизации вещества К. под воздействием повышенной температуры или реакционной среды (старение), отложения смолистых веществ и кокса на поверхности К., адсорбционного снижения прочности (эффект Ребиндера). Поэтому по прошествии определенного времени К., если это возможно, подвергают специальной обработке (регенерации) или заменяют свежими. Срок службы промышленных К. при непрерывных процессах в аппаратах с неподвижным слоем К. составляет в среднем 6—36 мес. Самые стабильные К. непрерывно работают более 10 лет (например, ванадиевые К. для окисления CO2 ). К., срок службы которых менее 1—2 мес., в реакторах с неподвижным слоем, как правило, не применяются. Для таких К. и К., работающих в течение коротких циклов с частой регенерацией (например, алюмосиликатные К. крекинга, К. дегидрирования углеводородов), иногда оказывается эффективным применение реакторов с подвижным, в частности псевдоожиженным, слоем К.
При гомогенных каталитических процессах в качестве К. применяются определённые химические соединения или их смеси; каталитические свойства К. в этом случае целиком определяются их химическим составом и строением. В промышленности преимущественно используются гетерогенные каталитические процессы с твёрдыми К. в виде пористых зёрен с развитой внутренней поверхностью. Каталитические свойства твёрдых К. зависят, кроме состава и строения, от величины их внутренней поверхности и пористой структуры. Необходимыми этапами каталитических процессов на твёрдых К. являются перенос реагирующих веществ, продуктов и тепла между потоком реакционной смеси и наружной поверхностью зёрен К. (внешний перенос) и перенос веществ и тепла внутри пористых зёрен К. (внутренний перенос). Чаще всего на работу промышленных К. оказывает влияние внутренний диффузионный перенос веществ. При недостаточной его скорости степень использования (кпд) К. уменьшается и общая интенсивность процесса падает. Кроме того, это может приводить к уменьшению выхода неустойчивых промежуточных продуктов, способных к дальнейшим превращениям на поверхности К., которые во многих случаях являются целевыми (например, в процессах неполного окисления углеводородов). Скорость диффузионного переноса внутри зёрен К. определяется его пористой структурой. Если реагирующие вещества находятся в газовой фазе, то для медленных реакций целесообразно применять К. с максимально развитой внутренней поверхностью и с порами диаметром около 1. 10–7м, обеспечивающими необходимую скорость встречной диффузии молекул реагирующих веществ и продуктов. Для реакций, протекающих со средней скоростью (2—10 кмоль /ч на 1 м3 К.), оптимальный диаметр пор при однороднопористой структуре соответствует длине свободного пробега молекул. При атмосферном давлении он составляет около 1. 10–7 м и по мере повышения давления уменьшается. Во многих случаях наиболее благоприятной оказывается разветвленная разнороднопористая структура зёрен, когда к крупным транспортным порам прилегают мелкие поры, создающие большую внутреннюю поверхность. При атмосферном давлении переход от зёрен с однороднопористой структурой к зёрнам с разветвленной разнороднопористой структурой позволяет повысить активность единицы объёма К. в 3—9 раз. Развитие представлений о влиянии пористой структуры на активность и избирательность К., разработка методов исследования удельной каталитической активности и пористой структуры и применение вычислительных машин для математического моделирования сложных процессов создало предпосылки для перехода от эмпирических к научно обоснованным методам разработки промышленных К.
Для приготовления К. применяют различные методы — осаждение из растворов, пропитку, смешение (например, в случае смешанных К.), сплавление с последующим выщелачиванием неактивной части (скелетные К.) и т.д. Многие К. перед использованием подвергают специальной обработке — активации, во время которой происходит образование активного вещества (например, металла в высокодисперсном состоянии в результате восстановления окислов) и формирование пористой структуры. С целью стабилизации высокодисперсного состояния или экономии активное вещество (например, платину) распределяют на поверхности носителя. В качестве носителей используют различные вещества, устойчивые в условиях процесса, например окись алюминия, силикагель, синтетические и природные силикаты, активные угли и др. Носители могут оказывать влияние на каталитические свойства, и для промышленных К. выбор носителя имеет большое значение.
Наблюдается тенденция перехода от однокомпонентных К. простого состава к сложным многокомпонентным и полифункциональным. Последние имеют на поверхности участки, различающиеся по характеру каталитического действия. На полифункциональных К. в одном аппарате за один проход реакционной смеси осуществляется ряд последовательных химических превращений и часто, особенно в случае неустойчивости промежуточных веществ, достигается лучший выход целевого продукта по сравнению с раздельным проведением процесса с помощью монофункциональных К. Полифункциональными являются, например, катализатор Лебедева для получения дивинила из этилового спирта, алюмоплатиновый К. для производства высокооктановых бензинов и др. Всё более широкое применение находят также промотированные К., активность которых существенно увеличена добавлением веществ (промоторов ), которые, взятые в отдельности, могут и не обладать каталитическими свойствами.
Для каждого промышленного процесса необходим свой К., обладающий оптимальным комплексом свойств. Поэтому производится большое число разнообразных К., различающихся химическим составом, пористой структурой, размером и формой гранул.
Объём мирового производства К. составляет 500—800 тыс. т в год; выпускается около 250 основных типов К., каждый тип включает ряд разновидностей. Между однородными по назначению К., производимыми в различных странах или разными фирмами, имеются определённые различия, особенно между К. новых процессов. Повсеместно наблюдается концентрация производства К. Создаются крупные катализаторные фабрики и цехи, позволяющие улучшить качество продукции, механизировать и автоматизировать производство, а сами К., производившиеся ранее только для потребления внутри предприятий, стали поступать как товарные продукты на внутренний и международный рынки.
Лит.: Каталитические свойства веществ. Справочник, под общ. ред. В. А. Ройтера, К., 1968; Пористая структура катализаторов и процессы переноса в гетерогенном катализе (IV Международный конгресс по катализу. Симпозиум III), Новосиб., 1970; Научные основы подбора катализаторов гетерогенных каталитических реакций. Сб., под ред. С. З. Рогинского, М., 1966; Научные основы подбора и производства катализаторов, Сб., под ред. Г. К. Борескова, Новосиб., 1964; Полифункциональные катализаторы и сложные реакции, пер. с англ., М., 1965; Катализ. Вопросы избирательности и стереоспецифичности катализаторов, пер. с англ., М., 1963; Методы исследования катализаторов и каталитических реакций, т. 1—3, Новосиб., 1965. См. также лит. к ст. Катализ .
Г. К. Боресков, А. А. Самахов.
Катализаторы биологические
Катализа'торы биологи'ческие, биокатализаторы, вещества, образующиеся в живых клетках и ускоряющие (положительный катализ ) или замедляющие (отрицательный катализ) химические процессы, протекающие в организмах. К числу К. о. относятся в первую очередь катализаторы белковой природы, называемые энзимами, или ферментами .