М. л. изучает также аналитические модели языка, в которых на основе тех или иных данных о речи, считающихся известными (например, множества правильных предложений), производятся формальные построения, дающие некоторые сведения о структуре языка. Приложение методов М. л. к конкретным языкам относится к области лингвистики (см. Языкознание ).
Лит.: Хомский Н., Синтаксические структуры, в сборнике: Новое в лингвистике, в. 2, М., 1962; Гладкий А. В.. Мельчук И. А., Элементы математической лингвистики, М., 1969; Маркус С., Теоретико-множественные модели языков, перевод с английского, М., 1970; Гладкий А. В., Формальные грамматики и языки, М., 1973.
А. В. Гладкий.
Рис. 3 к ст. Математическая лингвистика.
Рис. 2 к ст. Математическая лингвистика.
Рис. 1 к ст. Математическая лингвистика.
Математическая логика
Математи'ческая ло'гика , логика, развиваемая математическим методом. Характерным для М. л. является использование формальных языков с точным синтаксисом и чёткой семантикой, однозначно определяющими понимание формул. Потребность в такой логике выявилась в начале 20 века в связи с интенсивной разработкой оснований математики , возникновением множеств теории , где были открыты антиномии (см. Парадокс ), уточнением понятия алгоритма и другими глубокими и принципиальными вопросами математической науки. Однако значение М. л. для науки в целом не исчерпывается её математическими приложениями, поскольку хорошо рассуждать и доказывать приходится во всех науках. Вот почему М. л. с полным правом может быть охарактеризована как логика на современном этапе. См. статья Логика (раздел Предмет и метод современной логики) и литературу при этой статье.
А. А. Марков.
Математическая модель
Математи'ческая моде'ль , приближённое описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. М. м. — мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность изучаемых явлений. Процесс математического моделирования , то есть изучения явления с помощью М. м., можно подразделить на 4 этапа.
Первый этап — формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качеств, представлений о связях между объектами модели.
Второй этап — исследование математических задач, к которым приводят М. м. Основным вопросом здесь является решение прямой задачи, то есть получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математический аппарат, необходимый для анализа М. м., и вычислительная техника — мощное средство для получения количеств, выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе М. м. различных явлений, бывают одинаковыми (например, основная задача линейного программирования отражает ситуации различной природы). Это даёт основание рассматривать такие типичные математические задачи как самостоятельный объект, абстрагируясь от изучаемых явлений.
Третий этап — выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, то есть выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена — все параметры её были заданы, — то определение уклонений теоретических следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые её характеристики остаются не определёнными. Задачи, в которых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, называются обратными задачами. Если М. м. такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке М. м. позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.
Четвёртый этап — последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели. В процессе развития науки и техники данные об изучаемых явлениях всё более и более уточняются и наступает момент, когда выводы, получаемые на основании существующей М. м., не соответствуют нашим знаниям о явлении. Т. о., возникает необходимость построения новой, более совершенной М. м.
Типичным примером, иллюстрирующим характерные этапы в построении М. м., является модель Солнечной системы. Наблюдения звёздного неба начались в глубокой древности. Первичный анализ этих наблюдений позволил выделить планеты из всего многообразия небесных светил. Таким образом, первым шагом было выделение объектов изучения. Вторым шагом явилось определение закономерностей их движений. (Вообще определения объектов и их взаимосвязей являются исходными положениями — «аксиомами» — гипотетической модели.) Модели Солнечной системы в процессе своего развития прошли через ряд последовательных усовершенствований. Первой была модель Птолемея (2 век н. э.), исходившая из положения, что планеты и Солнце совершают движения вокруг Земли (геоцентрическая модель), и описывавшая эти движения с помощью правил (формул), многократно усложнявшихся по накоплении наблюдений.
Развитие мореплавания поставило перед астрономией новые требования к точности наблюдений. Н. Коперником в 1543 была предложена принципиально новая основа законов движения планет, полагавшая, что планеты вращаются вокруг Солнца по окружностям (гелиоцентрическая система). Это была качественно новая (но не математическая) модель Солнечной системы. Однако не существовало параметров системы (радиусов окружностей и угловых скоростей движения), приводящих количеств, выводы теории в должное соответствие с наблюдениями, так что Коперник был вынужден вводить поправки в движения планет по окружностям (эпициклы).
Следующим шагом в развитии модели Солнечной системы были исследования И. Кеплера (начало 17 века), который сформулировал законы движения планет. Положения Коперника и Кеплера давали кинематическое описание движения каждой планеты обособленно, не затрагивая ещё причин, обусловливающих эти движения.
Принципиально новым шагом были работы И. Ньютона , предложившего во 2-й половине 17 века динамическую модель Солнечной системы, основанную на законе всемирного тяготения. Динамическая модель согласуется с кинематической моделью, предложенной Кеплером, так как из динамической системы двух тел «Солнце — планета» следуют законы Кеплера.
К 40-м годам 19 века выводы динамической модели, объектами которой были видимые планеты, вошли в противоречие с накопленными к тому времени наблюдениями. Именно, наблюдаемое движение Урана уклонялось от теоретически вычисляемого движения. У. Леверье в 1846 расширил систему наблюдаемых планет новой гипотетической планетой, названной им Нептуном, и, пользуясь новой моделью Солнечной системы, определил массу и закон движения новой планеты так, что в новой системе противоречие в движении Урана было снято. Планета Нептун была открыта в месте, указанном Леверье. Аналогичным методом, используя расхождения в теоретической и наблюдаемой траектории Нептуна, в 1930 была открыта планета Плутон.