Некоторые типы естественно возникают в приложениях. Приведённая таблица даёт ряд важных типов квадратных М.
Следует отметить также ленточные М. — такие М., ненулевые элементы которых могут располагаться на главной диагонали и на диагоналях, соседних с главной, например, двухдиагональные и трёхдиагональные М. Не менее важны специальные типы М., употребляемых в качестве вспомогательных. Это элементарные М. — М., отличающиеся от единичной одним элементом; М. вращения и отражения.
Имеются унитарные аналоги М. вращения и отражения; правые (левые) треугольные М. — М., у которых равны нулю элементы под (над) главной диагональю; правые (левые) почти треугольные М. (М. типа Хессенберга) — М., у которых равны нулю элементы под (над) диагональю, соседней снизу (сверху) с главной.
Преобразование матриц. Численные методы решения систем линейных уравнений основываются обычно на преобразовании систем посредством цепочки левых умножений на подходящие вспомогательные М. с тем, чтобы перейти к легко решаемой системе. В качестве вспомогательных для вещественных М. употребляются элементарные М., М. вращения или М. отражения. Система с неособенной М. приводится либо к системе с треугольной М., либо с ортогональной. В теоретическом аспекте это равносильно представлению М. коэффициентов в виде произведения двух треугольных М. (при выполнении некоторых дополнительных условий) или в виде произведения треугольной на ортогональную (в том или другом порядке).
Для переопределённой системы умножением слева на цепочку М. вращения или отражения можно прийти к системе с треугольной М. порядка n , решение которой даёт обобщённое решение исходной системы.
Для решения проблемы собственных значений, раньше чем применять наиболее эффективные итерационные методы, целесообразно подобно преобразовать М. общего вида к М. типа Хессенберга или к трёх диагональной в случае симметрии. Этого можно добиться за счёт цепочки подобных преобразований элементарными М., М. вращения или М. отражения.
Историческая справка. Понятие М. было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И. А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами. Матричные обозначения получили распространение в современной математике и её приложениях. Исчисление М. развивается в направлении построения эффективных алгоритмов для численного решения основных задач.
Лит.: Смирнов В. И., Курс высшей математики, 9 изд., т. 3, ч. 1, М., 1967; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Гантмахер Ф. Р., Теория матриц, 3 изд., М., 1967; Уилкинсон Дж. Х., Алгебраическая проблема собственных значений, перевод с английского, М., 1970; Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд., М. — Л., 1963; Воеводин В. В., Численные методы алгебры. Теория и алгорифмы, М., 1966; Лаппо-Данилевский И. А., Применение функций от матриц к теории линейных систем обыкновенных дифференциальных уравнений, М., 1957; Фрезер Р. А., Дункан В., Коллар А., Теория матриц и её приложения к дифференциальным уравнениям и динамике, перевод с английского, М., 1950; Вазов В., Форсайт Дж., Разностные методы решения дифференциальных уравнений в частных производных, перевод с английского, М., 1963.
В. Н. Фаддеева.
Матрица (в полиграфии)
Ма'трица (нем. Matrize, от латинского matrix — матка, источник, начало) в полиграфии,
1) сменный элемент литейной формы с углублённым (иногда фотографическим) изображением буквы или знака, используемый при отливке типографских литер или шрифтовых строк. М. — металлический брусок, на одной из граней которого выштамповано (путём вдавливания пуансона) или выгравировано очко буквы или знака. При заполнении жидким сплавом полости литейной формы и очка на М., прижатой к форме, образуются типографские литеры или шрифтовые строки с рельефной печатной поверхностью. В зависимости от типа машины, на которой производится отливка литер или строк, различают шрифтолитейные, строкоотливные и буквоотливные М.
Шрифтолитейная М. — стальной брусок прямоугольного сечения с углублённым изображением одной буквы или знака. Комплект шрифтолитейных М. позволяет отливать на шрифтолитейной машине все литеры одного шрифта, используемые для ручного набора.
В строкоотливной наборной машине (см. Линотип ) из отдельных М., хранящихся в магазине, составляется матричная строка, устанавливаемая перед щелью литейной формы. После заполнения формы сплавом образуется цельнометаллическая шрифтовая строка.
В буквоотливной наборной машине (см. Монотип ) комплект М. собран в матричной рамке. При отливке необходимая М. устанавливается над щелью отливной формы. В отличие от строкоотливной шрифтовая строка на буквоотливной наборной машине образуется из отдельных литер. Монотипная М. снабжена отверстием для нанизывания на стержень матричной рамки и коническим углублением для точной установки и прижима М. к литейной форме.
В фотонаборных машинах используются М., в которых углублённые изображения знаков заменены фотографическими.
2) Углублённый оттиск с рельефной печатной формы на пластичном материале (картоне, пластмассе и т. д.), используемый для получения стереотипных копий печатной формы (см. Матрицирование , Стереотипия ).
Г. С. Ершов.
Матрица рассеяния
Ма'трица рассе'яния , S -maтрица, совокупность величин (матрица ), описывающая процесс перехода квантовомеханических систем из одних состояний в другие при их взаимодействии (рассеянии). Понятие «М. р.» введено В. Гейзенбергом в 1943.
При рассеянии система переходит из одного квантового состояния, начального (его можно отнести к моменту времени t = —¥) в другое, конечное (t = +¥). Если обозначить набор квантовых чисел , характеризующих начальное состояние, через i , а конечное — через f , то амплитуда рассеяния (квадрат модуля которой определяет вероятность данного рассеяния) может быть записана как Sfi . Совокупность амплитуд рассеяния образует таблицу с двумя входами (i — номер строки, f — номер столбца), которая и называется М. р. S . Каждая амплитуда является элементом этой матрицы (матричным элементом). Наборы квантовых чисел i , f могут содержать как непрерывные величины (энергию, угол рассеяния и другие), так и дискретные (орбитальное квантовое число, спин , изотопический спин , массу и т. д.). В простейшем случае системы двух бесспиновых частиц в нерелятивистской квантовой механике состояние определяется относительным импульсом частиц р ; тогда амплитуда рассеяния представляет собой функцию двух переменных — энергии Е и угла рассеяния J
Sfi = F (E , J).
В общем случае М. р. содержит элементы, отвечающие как упругому рассеянию, так и процессам превращения и рождения частиц. Квадрат модуля матричного элемента ½Sfi ½2 определяет вероятность соответствующего процесса (или его эффективное поперечное сечение).
Нахождение М. р. — основная задача квантовой механики и квантовой теории поля. М. р. содержит всю информацию о поведении системы, если известны не только численные значения, но и аналитические свойства (см. Аналитические функции ) её элементов; в частности, её полюсы (см. Особая точка ) определяют связанные состояния системы (а следовательно, дискретные уровни энергии). Из основных принципов квантовой теории следует важнейшее свойство М. р. — её унитарность. Оно выражается в виде соотношения SS+ = 1 [S+ — матрица, эрмитово сопряжённая S , то есть (S+ )fi = S*if , где знак* означает комплексное сопряжение] или